O ct 2 00 0 A CONVEX DECOMPOSITION THEOREM FOR FOUR - MANIFOLDS
نویسنده
چکیده
In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.
منابع مشابه
ar X iv : m at h / 06 10 28 4 v 1 [ m at h . SG ] 9 O ct 2 00 6 A UNIQUE DECOMPOSITION THEOREM FOR TIGHT CONTACT 3 - MANIFOLDS
It has been shown by V. Colin that every tight contact 3-manifold can be written as a connected sum of prime manifolds. Here we prove that the summands in this decomposition are unique up to order and contactomor-phism.
متن کاملA Convex Decomposition Theorem for Four - Manifolds
In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.
متن کاملar X iv : d g - ga / 9 41 00 02 v 1 4 O ct 1 99 4 3 - manifolds with ( out ) metrics of nonpositive
In the context of Thurstons geometrisation program we address the question which compact aspherical 3-manifolds admit Riemannian metrics of nonpositive curvature. We prove that a Haken manifold with, possibly empty, boundary of zero Euler characteristic admits metrics of nonpositive curvature if the boundary is non-empty or if at least one atoroidal component occurs in its canonical topological...
متن کاملO ct 2 00 0 Families of ( 1 , 2 ) – Symplectic Metrics on Full Flag Manifolds ∗
We obtain new families of (1,2)–symplectic invariant metrics on the full complex flag manifolds F (n). For n ≥ 5, we characterize n−3 different n–dimensional families of (1,2)–symplectic invariant metrics on F (n). Any of these families corresponds to a different class of non–integrable invariant almost complex structure on F (n).
متن کامل1 5 O ct 2 00 2 Removing Coincidences of Maps Between Manifolds of Different Dimensions
We consider sufficient conditions of local removability of coincidences of maps f, g : N → M, where M, N are manifolds with dimensions dimN ≥ dimM. The coincidence index is the only obstruction to the removability for maps with fibers either acyclic or homeomorphic to spheres of certain dimensions. We also address the normalization property of the index and coincidence-producing maps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000